Lab Manager | Run Your Lab Like a Business
Eight differently colored squares on a white background showing 3DSIM reconstructions of plant and animal tissue samples, the top row of 4 images (labeled a-d) are a yellow square show cell walls in oleander leaves, a red square showing hollow structures within black algal leaves, a purple square showing root tips of corn tassels, and a teal/purple square showing actin filaments in mouse kidney tissue. The bottom four images (labeled e-h) show corresponding maximum intensity projection images below each matching top image.
Li, Cao, et al., doi 10.1117/1.APN.3.1.016001.

Super-Resolution Microscopy Harnesses Digital Display Technology

Microscopy breakthrough combination allows for high-speed imaging that facilitates biological discovery

by
SPIE

SPIE, the international society for optics and photonics, was founded in 1955 to advance light-based technologies. Serving more than 255,000 constituents from 183 countries, the not-for-profit society advances emerging technologies...

ViewFull Profile.
Learn about ourEditorial Policies.
Register for free to listen to this article
Listen with Speechify
0:00
5:00

In the ever-evolving realm of microscopy, recent years have witnessed remarkable strides in both hardware and algorithms, propelling our ability to explore the infinitesimal wonders of life. However, the journey towards three-dimensional structured illumination microscopy (3DSIM) has been hampered by challenges arising from the speed and intricacy of polarization modulation. 

Introducing the DMD-3DSIM System

Enter the high-speed modulation 3DSIM system “DMD-3DSIM,” combining digital display with super-resolution imaging, allowing scientists to see cellular structures in unprecedented detail. As reported in Advanced Photonics Nexus, Professor Peng Xi's team at Peking University developed this innovative setup around a digital micromirror device (DMD) and an electro-optic modulator (EOM). It tackles resolution challenges by significantly improving both lateral (side-to-side) and axial (top-to-bottom) resolution, for a 3D spatial resolution reportedly twice that achieved by traditional wide-field imaging techniques.

Get training in Lab Crisis Preparation and earn CEUs.One of over 25 IACET-accredited courses in the Academy.
Lab Crisis Preparation Course

Polarized insight into cellular structures

In practical terms, this means DMD-3DSIM can capture intricate details of subcellular structures, such as the nuclear pore complex, microtubules, actin filaments, and mitochondria in animal cells. The system's application was extended to study highly scattering plant cell ultrastructures, such as cell walls in oleander leaves and hollow structures in black algal leaves. Even in a mouse kidney slice, the system revealed a pronounced polarization effect in actin filaments.

An open gateway to discovery

What makes DMD-3DSIM even more exciting is its commitment to open science. Xi's team has made all the hardware components and control mechanisms openly available on Github, fostering collaboration and encouraging the scientific community to build upon this technology.

The DMD-3DSIM technique not only facilitates significant biological discoveries but also lays the groundwork for the next generation of 3DSIM. In applications involving live cell imaging, advancements in brighter and more photostable dyes, denoising algorithms, and deep learning models based on neural networks promise to enhance imaging duration, information retrieval, and real-time restoration of 3DSIM images from noisy data. By combining hardware and software openness, the researchers hope to pave the way for the future of multidimensional imaging.

- This press release was originally published on the SPIE website